If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19=t^2
We move all terms to the left:
19-(t^2)=0
We add all the numbers together, and all the variables
-1t^2+19=0
a = -1; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-1)·19
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{19}}{2*-1}=\frac{0-2\sqrt{19}}{-2} =-\frac{2\sqrt{19}}{-2} =-\frac{\sqrt{19}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{19}}{2*-1}=\frac{0+2\sqrt{19}}{-2} =\frac{2\sqrt{19}}{-2} =\frac{\sqrt{19}}{-1} $
| 8x-4=x-3=2 | | y=(-3^2)^3 | | 5(x-5)=-2 | | 6(x+5)=-72 | | x³+0.125x-0.025=0 | | x÷2=13 | | 6x+4=40 | | 6x+4=40. | | 2(7+x)=9x | | 6x+10=-23 | | 0,01^x=0,1 | | 10^x=39 | | 125^1/2=(2/10)^x+1 | | 2(6x–5)=–(3x+1)+6 | | 2x+5)=3(x–2) | | -9x-17=18 | | 6^x+2=1/216 | | 200y–49=51 | | 80=4(a+2a) | | 2m+10=24 | | -2m=-74 | | (x–5/2)×8=3x | | y-21=63 | | 2x–3=3 | | 15/z=45/19 | | 10y+200=120 | | 4(x-1)=(2(6-2x) | | 3(8-3y)-2y=2 | | 0=4x^2+20-56 | | ×-5/2×8=3x | | 3x+21=4x-10 | | 113.04=3.14*r*r |